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Abstract: A short synthetic route to the natural product bromoxone is reported (S steps, 15% overall
yield), involving regioselective monoepoxidation of an clectrolytically-derived quinone monoketal
followed by sterenselective ketone reduction,

Bromoxone (1}, and its acetylated derivative (2), were isolated in 1987 from a newly discovered species
of acorn worm belonging to the genus Ptychodera found in deep underwater caves on the island of Maui.l The
structure of (2) was confirmed by X-ray crystallography and (1) was converted into (2) by acetylation.
Compound (2) was shown to possess antitumour properties.! Compounds (1) and (2) belong to a rapidly
increasing group of bioactive epoxygquinol natural products which includes chaloxone (3),2 the antibiotic
MM14201 (4)3 and the antibiotic LL-C10037a (8),4 which was shown to be the N-acetylated enantiomer of (4)
during biosynthetic studies.> 2-Alkyl-substituted analoguessuch as epoxydon® are also known and there is a
large family of complex 4-substituted epoxyquinols which includes the colabomycin/manumycin families of
antibiotics’ and the diepoxycyclohexanone aranorosin.8
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In an ongoing programme in this area we have recently completed the synthesis of (-)-aranorosin® and are
now investigating synthetic routes to colabomycin, manumycin and related compounds. In this Letter we report
the viability of one of these synthetic approaches by carrying out the first synthesis of bromoxone (1) in racemic
form (Scheme).10 Thus bromogquinone monoketal (9) was readily prepared from (8) by anodic oxidation
followed by selective ketal monohydrolysis.1? Efficient monoepoxidation of (9) proved to be extremely
difficult. The best yicld of (10) from alkaline hydrogen peroxide systems was 21% using NaOH/MeOH, with
the methanol adduct (11) being formed as a by-product in 33% yield. The use of tert-butyl hydroperoxide/base
in THF at low temperature gave better yields, the best being 43-46% with KOBut or KH as base (see Scheme).
With Buli as basel2 the reaction was much slower and the best yield obtained was 33%. Hydride reduction of
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(10) showed a remarkable stereochemical dependency on the choice of base and solvent (Scheme). The syn-
hydroxyepoxide (13) predominated using NaBH4 (methanol), L-selectride (THF) and DibalH
(dichloromethane) but the stereoselectivity was low. Remarkably, the use of DibalH in THF gave a 9:1
predominance of the required anfi-isomer (12). Compounds (12) and (13) could be separated by repeated
recrystallisation but the mixture was usually employed in the deprotection step. This proved difficult, but
success was achieved with montmorillonite K10 clay. Bromoxone (1) was separated from its epimer (14) by
florosil chromatography in 53% Yyield over the final two steps (decomposition occurred on silica or alumina).
Epibromoxone (14) was obtained in up to 36% yield in a similar manner using in the deprotection step the
33:67 mixture of (12) and (13) obtained from L-selectride reduction of (16). We are currently extending this
methodology to more complex members of this natural product family.
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Reagents: Beduction of (JO) 12):(13)
(i)  Anodic oxidation, KOH/McOH B7%)!! NaBH4, MeOH, 0°C 40:60
(i)  AcOH, acetone (71%)!! NaBHg4, CeCl3, MeOH, 0°C 50:50
(iii) 'BuOOH, KH, THF, -50°C (46%) L-Selectride, THF, -78°C 33:67
(iv) DibalH, THF, -78°Ctort DibalH, CHaCly, -50°C 33:67
)  K-10, CHxCl3 [(1), 53% over 2 steps} DibalH, THF, -78°C to rt 90:10
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